
in five minutes

Secure
Coding

3

CO
DE

Intro:
Morning meeting at Acme Inc.

Anna, Scrum Master:	Sorry to start the day with a bit of unpleasantness, but
Janne at Delta-Q called me late yesterday. He says
there was a hitch last week with the online store we’re
working on. Now he knows what the problem is.
Judging by the e-mails coming in from customers, it
seems that personal information and passwords
have been leaking ...	

	 Jonas, developer: 	 Oh no!	
	A nna: 	 Now he wants to meet the people working on the site.

He believes that either we’ve left something open, or
else it’s even worse ...

	 Simon, developer: 	 Are you saying that he believes that we ...?

Anna is grim-faced. She nods gravely.

54

Optimum security levels are
based on a trade-off

Total security is an unobtainable fantasy: there are no absolute measures of
safety of the sort “if you do this, absolutely nothing can happen.” That’s how
it is with everything in life. Compare, for example, your life as a road-user
– it is built around your daily application of a balanced risk assessment
where, for instance, you weigh up the protection afforded by your bicycle
helmet against the dangers posed by drunk drivers.

Similarly, your life as a software developer or computer user must be
based on a balanced risk assessment where you make trade-offs:

•	between efficiency and security
•	between freedom of action and a sense of security
•	between cost and the value of your work
•	between fast, temporary solutions and time-consuming, robust

solutions.

You do not have to solve all the security problems in your
product, but you must

•	 understand the risks you take
•	 understand that you are taking them

Have you thought through
security?

Hand on heart – what’s your own approach to security?

•	 Do you avoid taking risky short cuts when writing code?
•	 Do you refrain from using templates or routines in your application

whose origin you’re uncertain of?
•	 Have you made a rational risk analysis and considered what threats

and security issues it is sensible to take into account? Have you thought
through what an inexperienced or destructive user might do with your
system, and do you have a reliable process for restoring it?

•	 Have you or someone else backed everything up, so that you can con
fidently and safely restore your working environment after a crash?

If not, the following pages may serve as food for thought ...

76

Safe suggestion #2:

Never trust data

Studies have shown that 60–80 % of all attacks are possible because
we do not validate that the data is in the correct format, even if it was
input directly by the user. The principle is never to trust data that
comes from somewhere other than our own system and that we can
keep track of.

All data input must therefore be validated in some way. One principle is to
locate any defects or abnormalities, but then you constantly have to add
new rules as the intruders become more skilful. It is actually better to
define what authentic and accurate data should look like.

Also remember that even if you validate data on the cli-
ent side, you need to revalidate it on the server side. A
malicious user can circumvent validation in clients and
send bad data straight to the server.

Some simple examples:

•	 If you have a field where you have to fill in a phone
number, check that it does not contain any charac-
ters other than those that a phone number can contain.

•	 Many fields can be checked in terms of reasonable values.
Input of quantities should be positive and e.g. heights could
be checked for plausability; a person is probably not 10 meters
tall.

•	 Some fields have to allow non-standard characters. For exam-
ple, a surname might be O’Neil, which contains a character that
some systems do not handle well. Make sure you store data in
a sensible format so that problems do not arise.

Examples of vulnerabilities

•	 Web forms where the hacker, for example, can enter Java
Script instead of his surname (and can thereby create Cross-
Site Scripting).

•	 When the user enters SQL code to dump data in a field where
you can search for products (so-called SQL injection).

Safe suggestion #1:

Take responsibility

When we write robust and intelligible code, we get fewer security
problems. Unfortunately, most developers will probably agree that
they often have to hand over products that they are not entirely
happy with – a consequence of the fact that management prioritises
speed of production over long-term freedom from problems.

With luck, the worst thing that happens is that a colleague smirks at your
clumsy code or groans at your substandard structure when debugging the
code later on. If you are unlucky, it’ll be worse – you might, for instance,
have created a vulnerability that someone with malicious intent can exploit.

Here we can gain inspiration from the Software Craftsmanship movement
and stress the importance of professional responsibility. Developers with
professional pride should not have to accept deadlines so tight that there’s
insufficient time to do a good job!

Software Craftsmanship

The Software Craftsmanship movement aims to promote profes-
sionality in the field of software development, focusing on well-
crafted software, knowledge sharing and cooperation.

Read more at http://manifesto.softwarecraftsmanship.org

98

Safe suggestion #3:

Create a threat model

Don’t skimp on documentation. Make sure you at the very least
have a clear and updated overview of the system architecture at a
high level. Besides making communication relating to the system
much simpler, this also provides a good basis for threat modeling.

When you go through the architectural model together, you can discuss
questions such as these:

•	 Between which parts is it possible to carry out an attack?
•	 Where is transferred data encrypted and unencrypted?
•	 What is vulnerable to an attack from the internet and where

can an insider strike?
•	 What level of security are we willing to pay for?

Safe suggestion #4:

Keep yourself updated

Professional developers should always keep themselves up-to-
date on all fronts with both the big picture and the details.

You have to know what’s going on in the technology niche in which you ope
rate – the language you’re working in, modified standards, newly launched
products. If you are a tightly knit team you may not all need to keep track
of everything – it may be enough for you to select coverage areas and keep
each other informed about things that are worth paying attention to. This is
linked to taking pride in your program development, which is what the Soft-
ware Craftmanship movement advocates. You need to know what is good
code in order to see what is bad code.

It is also obvious that your system platform and your developer tools must
be kept updated to work efficiently. Sometimes people reckon that you
should not change what works, but in the case of security, there is good
reason to look at what is most current, so that you can know if you should
upgrade purely for safety reasons. Therefore, always make sure someone
on your team keeps abreast of news relating to your developer tools or any
third-party code you are using.

Data flow diagrams of this type make it possible to get an overview
of how data moves through the system, where it ends and where it
might be good to protect the data (see page 14 for program tips).

 Checklist

	One team member should follow release notes for each
language, platform and framework that you use.

	Read blogs of industry specialists.

	Follow official and unofficial mailing lists and discussion
groups on the language you’re working in.

	Follow sources that feature new versions of the tools you use.

	Take a couple of relevant courses each year

	Update this check-list.

WEB SERVER BOUNDARY

WEB SERVE
R /

DA
TA

BA
SE

 B
O

U
N

D
A

R
Y

STORE
WEBSITE

CUSTOMERS VENDORS

WEB PAGES
ON SERVER

DATABASE
RECORDS

STORE
DATABASE

SQL
QUERY CALLS

DATA

Data Data

Requests
Requests

Responses

Pages / Con�g
Files

Responses

DISK

1110

Safe suggestion #5:

Make a fuzz

When you carry out normal component and system testing of an
application, it can be hard to trigger certain potentially devastating
types of fault. An error that makes the application behave unexpec
tedly may be the way in for a hacker.

What you can then do is fuzz testing. This means that you allow a tool to
test limits and error handling by bombarding the application with data,
both valid and invalid, and see what happens. If a malfunction occurs, you
investigate how it happened.

This is something that can run in the background in a test environment and
produce results before the release of new versions of the application.

It’s a way to get answers to these questions:

•	 Can the system cope with error types that we haven’t defined?
•	 Can we really handle the load we’ve said that we can manage?
•	 What happens when things go wrong?

Safe suggestion #6:

STAY PROUD OF Your Code

Experienced hackers often exploit older parts of the application.
The bit that no longer looks like a daily problem may in fact be the
biggest problem that you have. The rule “don’t fix it if it ain’t broke”
or “if it works, don’t touch it” is not always valid in the security
context.

Old code must not be forgotten. If we neglect it, it can’t be reused or used as
a starting point for new applications, and instead we may end up duplicating
parts of the code base.

However, there are two approaches to handling the problem:

1. Make sure that code can grow old gracefully.
You do this by following Safe Suggestion # 1: Take responsibility. Be proud
of what you have written in the past! Make sure it’s recycled and kept up-to-
date with new developments.

2. Give up and isolate the damage
Declare that “we don’t trust this code” and shut it
into a black box. You then manage the code just like
an external system that you have no control over,
i.e. you validate everything that comes out of it and
make sure that you send the right things into it.

The Boy Scout Rule says:

Leave the campground cleaner
than you found it.

In software it’s a matter of micro improvements, i.e. improving the
code each time we modify it, instead of letting it degenerate when
we make changes and fix bugs.

”CO
DE

CO
DE

1312

Safe suggestion #7:

Use the best tools

As a professional developer, you should always use the best tools,
both in the development environment and as a framework for the
product. Many security issues can be resolved if the developers
have good ways to test and get feedback on the problems. This
robustness is the alpha and omega of security.

Some things to consider when choosing your environment:

•	 In which environment are our developers most effective, and what
support can help with security?

An environment that provides quick feedback and can assist in finding
“code that smells bad” is a great help.

•	 If you find something that doesn’t work, how can you replace it?

Can users of the system do it themselves? Can you force an end-end user
to update an insecure version of your application?

•	D o you have an easy way of detecting when one of your third-party
products needs to be replaced?

And can you replace them easily?

Tools that can help you:

	 WebScarab	 –	Suite of applications to test web applications
	OWASP AntiSamy	 –	Validation in Java and .Net
	 OWASP ESAPI	 –	Library of security solutions for Java
	 CodeSpy	 –	Find vulnerabilities through reflection in J2EE
	 JbroFuzz	 –	Fuzzing for JBoss
	 RFuzz	 –	Tool for fuzzing in Ruby

What can we expect?

A cloud-based future
Applications move into the cloud as Software as a Service, which transfers
infrastructure risks to the service providers. Threats to access will have to
be included in contracts. What guarantees do we have that their platform
can handle an attack?

Shared future
Many users are moving towards the philosophy “Sharing is Caring”. They
want to share their knowledge and experiences through social media. If the
application is included in the social flora, we need in certain situations to
reflect on the integrity of and access to our application in other ways. In this
way, we make sure that there are clear limits as to what can and can’t be
shared.

What is important
In the future we’ll have to think more about what is important in our busi-
ness idea. It may be necessary to protect this in the best way we can. It
could be some kind of data, technical solutions or perhaps reputation which
is most important.

A hacker is not always bad
A vulnerability in the product can be a big problem, but it is even bigger if it
is used, and disastrous if you do not know about it. Therefore make it easy
for users or outsiders to tell you about any errors in the product and make
sure you have a proper dialogue with them about what happens. Many peo-
ple who find errors in a product are not out to exploit them, but want to help
to create a usable product.

14

Literature

Writing Secure Code (2nd Ed) – Michael Howard, David LeBlanc
Book on the basics of secure systems development

Software Security: Building Security In – Gary McGraw
Detailed book on how to write more secure applications

The Security Development Lifecycle – Michael Howard and Steve Lipner
Process for secure systems development used at Microsoft

Links

Open Web Application Security Project
Lots of articles, checklists and tools for you as a developer
http://www.owasp.org

SAFECode
Forum with several major software companies promoting industry stand-
ards for secure systems development
http://www.safecode.org/

Microsoft Security Bulletins
Follow the latest bulletins from Microsoft about vulnerabilities in their
products
http://technet.microsoft.com/en-us/security/bulletin

Oracle Security
Security Patches for Java and frameworks
http://www.oracle.com/technetwork/topics/security/whatsnew/index.html

Softhouse Consulting

Stockholm
Tegnérgatan 37

SE-111 61 Stockholm
Phone: +46 8 410 929 50

info.stockholm@softhouse.se

Göteborg
Lilla Bommen 1

SE-411 04 Göteborg
Phone: +46 31 760 99 00

info.goteborg@softhouse.se

Malmö
Stormgatan 14

SE-211 20 Malmö
Phone: +46 40 664 39 00

info.malmo@softhouse.se

Karlskrona
Campus Gräsvik 3A

SE-371 75 Karlskrona
Phone: +46 455 61 87 00

info.karlskrona@softhouse.se

www.softhouse.se

Security issues are increasingly important in the IT world, both
for developers and users. Burying your head in the sand is just
as counterproductive as being paranoid. Instead we should keep
the discussion alive as to what is a reasonable level of security
within our organization, our projects and for ourselves as indi-
viduals. At the same time there are of course practical steps we
can take that can achieve a lot through relatively little sacrifice.

This publication can serve as a basis for internal discussion
about how you and your colleagues can develop security within
your organization, based on the following seven tips:

• Take responsibility
• Never trust data
• Create a threat model
• Keep yourself updated
• Make a fuzz
• Stay proud of your code
• Use the best tools

