Softhouse
Allt om AI2025-10-31T12:46:22+02:00

Allt om AI

Allt om AI: Från kod till konsekvens

Välkommen till vårt kunskapsmagasin om artificiell intelligens. Här samlar vi artiklar, guider och spaningar som utforskar AI ur flera perspektiv – från teknisk implementation och promptdesign till etiska överväganden och affärsnytta. Vi tror på att förstå tekniken på djupet, men också på att våga ställa frågor om vad den gör med oss, våra verksamheter och vår framtid.

Allt om AI är för dig som vill förstå, använda och utmana AI – på riktigt.

Saker vi har gjort

  • Notar – Mäklarwebben som tog hem Guldhemmet fem år i rad

  • Så tog vi fram en AI-bot som stärkte vårt interna arbete

  • Gör video sökbart och tillgängligt med AI-baserad transkribering

  • AI för avvikelsedetektering i energidata

  • AI som förstår vad du lyssnar på – ämnesklassificering för poddskapare

  • Nu rapporterar diskmaskinerna själva in sin hälsostatus

  • AI för smartare leadshantering och kompetens-matchning

  • AI för bygganalys – automatiserad kostnadsberäkning från ritningar

  • AI för smartare energidata – förstå hushållens behov i realtid

  • AI och Computer Vision för bildklassificering i nanometerskala

    AI på 5 minuter

    Du har väl inte missat vår guide ”AI på 5 minuter” som ger dig handfasta tips på hur du kan komma igång med AI.

    Frågor om AI

    Vad innebär molnlösningar för AI/ML?2025-10-20T11:54:07+02:00

    Molnbaserade AI-lösningar ger tillgång till skalbar datakapacitet, flexibla verktyg och snabbare utveckling. Vi hjälper er utnyttja molnets kraft för att implementera avancerad AI kostnadseffektivt.

    Hur fungerar UI/UX för AI-lösningar?2025-10-20T11:54:32+02:00

    Vi designar UI/UX som gör AI och maskininlärning lättillgängligt och intuitivt för både medarbetare och kunder. Genom användarcentrerad design säkerställer vi att AI skapar värde i praktiken.

    Vad innebär Proof of Concept inom AI?2025-10-23T11:32:14+02:00

    AI Proof of Concept (PoC) testar och bevisar genomförbarhet och affärsnytta innan fullskalig implementation. Genom att fokusera på konkreta användningsfall visar vi snabbt värdet i er verksamhet.

    Vad är en AI-prototyp?2025-10-23T11:29:52+02:00

    AI-prototyping är ett snabbt och effektivt sätt att testa hur AI kan skapa värde i din verksamhet innan fullskalig implementation. Vi bygger skräddarsydda prototyper som visar konkreta resultat och insikter.

    Hur lyckas man med ett AI-projekt?2025-10-23T11:32:53+02:00

    Nyckeln till framgång i AI-projekt är att börja med ett tydligt syfte och ett konkret användningsfall. Vi arbetar iterativt med snabb prototyping, testning och validering för att snabbt visa effekt och minska risk.

    Hur ser arbetsprocessen ut för ett AI-expertprojekt?2025-10-20T11:52:11+02:00

    Vi arbetar agilt i nära samarbete med kunden – från datainsamling och modellering till test, validering och driftsättning. Varje steg bygger på insikter och kontinuerlig leverans för snabb effekt och mätbar nytta.

    Hur säkerställer ni att AI-lösningar fungerar i produktion?2025-10-20T11:52:31+02:00

    Vi använder MLOps-metodik för att skapa stabila och skalbara AI-lösningar. Det innebär automatiserade pipelines, testning, versionering, övervakning och kontinuerlig förbättring i driftmiljö.

    Bygger ni modeller från grunden eller använder ni förtränade modeller?2025-10-23T10:40:31+02:00

    Beroende på projektet bygger vi antingen modeller från grunden eller finjusterar etablerade modeller. Vid finjustering av modeller säkerställer vi givetvis att licensvillkor följs. Vi väljer alltid det mest effektiva tillvägagångssättet för att nå era mål.

    Vilka tekniska områden arbetar ni inom?2025-10-20T11:53:07+02:00

    Vi har expertis inom datorseende, bildanalys, naturlig språkbehandling (NLP), prognoser, anomalidetektering och MLOps. Våra team kombinerar teori och praktik för att skapa robusta lösningar med verklig affärseffekt.

    Vad innebär AI & Maskininlärning – Expert hos Softhouse?2025-10-20T11:53:25+02:00

    Vår expertfunktion inom AI och maskininlärning hjälper företag att ta sina AI-initiativ till nästa nivå. Vi erbjuder avancerad modellutveckling, dataanalys, NLP och datorseende med fokus på affärsnytta och långsiktig kvalitet.

    Hur tar ni hand om drift och underhåll efter att modellen är implementerad?2025-10-20T15:11:47+02:00
    Vi hjälper till med hela livscykeln – från modellutveckling till deployment och drift. Efter implementering behövs övervakning, underhåll, eventuell reträning av modellen samt kontinuerlig analys av prestanda och affärsvärde. Genom att ha processer för detta på plats kan vi säkerställa att AI-lösningen fortsätter leverera och anpassas över tid.
    Vilka branscher och användningsfall passar särskilt bra för AI & maskininlärning?2025-10-20T15:12:18+02:00
    AI och maskininlärning kan appliceras brett – exempelvis inom tillverkning (kvalitetskontroll), detaljhandel (kundanalys), sjukvård (bildanalys), logistik (förutsägande underhåll) och tjänsteföretag (automatisering och kundservice). Vår erfarenhet visar att de bästa resultaten uppnås när problemet är tydligt, data finns tillgänglig och affärsnyttan definierad.
    Hur säkerställer ni att AI-lösningen följer regler och etiska riktlinjer?2025-10-20T15:12:28+02:00
    Vi arbetar aktivt med frågor som dataskydd (GDPR), bias, transparens och ansvar – redan i tidiga faser. Genom att ha dessa frågor på bordet tidigt och inkludera dem i användningsfallet och tekniken, hjälper vi er att leverera lösningar som inte bara fungerar, utan också är hållbara och förankrade i rätt ramverk.

    Hur lång tid tar det innan vi ser mätbar effekt av en AI-lösning?2025-10-20T15:12:34+02:00
    Tiden varierar beroende på datamognad, problemets komplexitet och hur väl integrerat AI-lösningen blir i verksamheten. Vanligtvis kan värdeskapande prototyper levereras inom några veckor till ett par månader. Därefter krävs ofta iterationer och anpassning för att nå full skaleffekt. Viktigt är därför att ha tydliga KPI:er och uppföljningsplaner från start för att mäta och styra resultat.

    Vad krävs för att en organisation ska kunna nyttja AI-lösningar framgångsrikt?2025-10-20T15:12:39+02:00
    Det handlar om mer än teknik: ni behöver ha rätt datakvalitet och dataorganisation, tydliga mål och prioriteringar, en förståelse för förändringsarbete hos användarna – samt en strategi för hur AI integreras i verksamheten. Utan dessa komponenter riskerar projekt att stanna vid pilotstadiet eller bli isolerade lösningar utan större effekt.

    Kan ni hjälpa oss med både teknikval och modellutveckling för maskininlärning?2025-10-20T15:12:46+02:00
    Ja. I vårt erbjudande ingår rådgivning kring teknikplattformar (exempelvis moln, ramverk, tränings- och inferensmiljöer), samt konkret modellutveckling och deployment. Vi har erfarenhet av verktyg som TensorFlow, PyTorch och scikit-learn – och ser till att tekniken matchar era krav på prestanda, säkerhet och driftbarhet.

    Från data till affärsnytta2025-10-20T15:12:52+02:00
    Vår process börjar med att förstå er verksamhet och de datakällor ni har. Därefter identifierar vi konkreta användningsfall, bygger en prototyp och testar i liten skala för att mäta affärsnytta. När värdet är bevisat kan vi skala upp och driftsätta lösningen. Denna stegvisa metod säkerställer att ni får effekt snarare än ett teknikprojekt utan tydlig koppling till verksamheten.

    Vad innebär förklarbar AI och varför är det viktigt?2025-10-20T15:12:57+02:00
    Förklarbar AI handlar om att kunna visa hur och varför ett AI- eller maskininlärningssystem kom fram till ett visst beslut eller resultat. Det ökar förtroendet, underlättar ansvar (governance) och är ofta ett krav inom reglerade branscher. Genom att arbeta med modeller och processer som är förståeliga och transparenta, hjälper vi er att inte bara få tekniken att fungera – utan också att kunna förklara och förankra den internt och externt.

    Hur går en AI Workshop till?2025-10-23T10:01:36+02:00

    Våra AI-workshops är interaktiva sessioner där vi tillsammans identifierar idéer, utmaningar och möjliga användningsfall. Målet är att snabbt hitta var AI kan skapa störst nytta i er verksamhet.

    Vad är en AI Assessment?2025-10-23T10:03:33+02:00

    En AI Assessment är vår strukturerade genomlysning av er nuvarande mognad inom strategi, organisation, data, teknik och operations. Den ger en tydlig bild av var ni står och vad som krävs för att ta nästa steg.

    Hur förankrar vi AI-strategin i organisationen?2025-10-23T10:03:52+02:00

    Skapa en gemensam målbild, utse ansvar, utbilda nyckelroller och etablera en enkel operativ modell (t.ex. AI-coE/light). Följ upp resultat öppet mot KPI:er.

    Vad kostar det att ta fram en AI-strategi?2025-10-23T10:04:15+02:00

    Priset styrs av omfattning, antal use cases, datakartläggning och reglering. Vi rekommenderar en fokuserad leverans som mynnar ut i PoC-klara initiativ.

    Hur snabbt kan vi ta fram en AI-strategi?2025-10-23T10:04:39+02:00

    Vanligtvis 4–8 veckor. Tidslinjen påverkas av datalandskap, stakeholders, regulatoriska krav och behovet av förstudier.

    Hur adresserar vi GDPR, säkerhet och AI-etik i strategin?2025-10-23T10:04:53+02:00

    Inför privacy-by-design, DPIA där relevant, kryptering, åtkomstkontroller, loggning och mänsklig översyn. Definiera regler för träningsdata och användargenererat innehåll.

    Hur väljer vi plattform och verktyg för AI?2025-10-23T10:05:16+02:00

    Matcha kraven: datavolymer, säkerhet, latency, MLOps, kostnad och kompetens. Använd öppna standarder och undvik onödig vendor lock-in.

    Behöver vi en AI-policy?2025-10-20T13:47:20+02:00

    Istället för tunga modeller tar vi fram praktiska AI-policyer och riktlinjer som passar er verksamhet. Det ger tydlighet kring ansvar, etik och användning av AI.

    Hur kopplar vi AI-strategin till vår datastrategi?2025-10-23T10:06:46+02:00

    Vi hjälper er förstå vilket dataunderlag ni redan har och vilket som saknas. Genom att kombinera teknisk kompetens och affärsanalys bygger vi en datagrund som gör AI-initiativ möjliga.

    Vad är skillnaden mellan PoV och PoC i AI-sammanhang?2025-10-23T10:07:03+02:00

    PoV (Proof of Value) kvantifierar affärseffekt och KPI:er. PoC (Proof of Concept) testar teknisk genomförbarhet. Tillsammans reducerar de risk innan skalning.

    Hur prioriterar vi rätt AI-use cases?2025-10-23T10:00:48+02:00

    Väg affärsvärde mot genomförbarhet: datatillgång, komplexitet, risk, beroenden och tid till värde. Börja med ett PoC på 1–2 högt värderade, lågrisk-case.

    Vad ingår i ett AI-strategiarbete?2025-10-23T10:07:35+02:00

    Typiskt ingår nulägesanalys, identifiering och prioritering av use cases, datamognadsbedömning, målarkitektur och plattformsval, risk/etik/GDPR, operativ modell samt en roadmap med KPI:er.

    Varför behöver vi en AI-strategi innan vi bygger lösningar?2025-10-23T14:03:28+02:00

    Strategin säkerställer att AI-insatser stödjer affärsmål, får rätt prioritet och budget, och att ansvar, data och teknik är på plats för hållbar leverans.

    Vad är en AI-strategi?2025-10-23T10:08:06+02:00

    En AI-strategi beskriver hur din organisation använder AI för att nå affärsmål. Den omfattar målbild, prioriterade användningsfall, datakrav, teknikval, governance och en realistisk roadmap.

    upTech våra senaste episoder

    Se våra tidigare episoder med Linus Ekenstam och Amer Mohammed.

      Till toppen